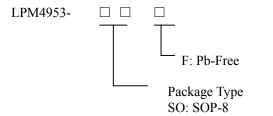


LPM4953

Dual 30V P-Channel PowerTrench MOSFET


General Description

The LPM4953 is 2-channel the P-channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

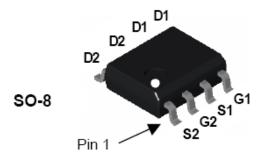
This high density process is especially tailored to minimize on-state resistance.

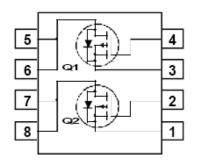
These devices are particularly suited for low voltage application, notebook computer power management and other battery powered circuits where high=-side switching.

Ordering Information

Pin Configurations

Features


- -30V/-5.0A, RDC(ON)= $38m\Omega(typ.)@VGS=-10V$
- -30V/-3.6A, RDC(ON)= $60m\Omega(typ.)$ (aVGS=-4.5V
- Super high density cell design for extremely low RDC(ON)
- SOP8 Package


Applications

- ♦ Portable Media Players
- ♦ Cellular and Smart mobile phone
- ♦ LCD
- ♦ DSC Sensor
- ♦ Wireless Card

Marking Information

Please see website.

SOP8(Top View)

Functional Pin Description

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±25	V
Ь	Drain Current – Continuous	(Note 1a)	-5.3	A
	- Pulsed		-50	
Po	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	1
		(Note 1c)	1	1
Tj, Tstg	Operating and Storage Junction Temperature Range		-55 to +175	°C

Thermal Characteristics

Reja	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
Reja	Thermal Resistance, Junction-to-Ambient	(Note 1c)	125	°C/W
R _{ejc}	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

Preliminary Datasheet

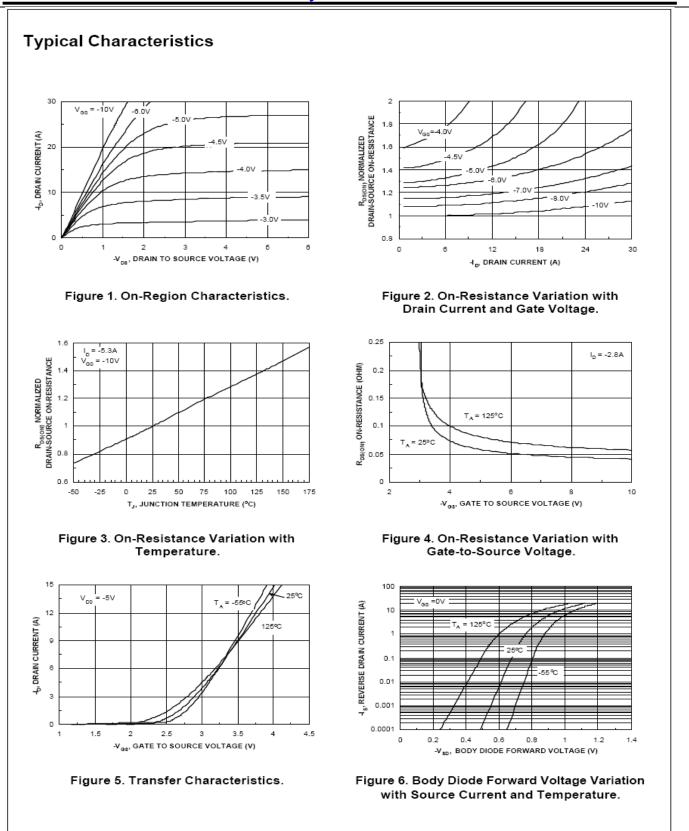
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics	L				
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = –250 μA, Referenced to 25°C		-23		mV/⁰C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -24 V$, $V_{GS} = 0 V$ $V_{GS} = 25 V$, $V_{DS} = 0 V$			-1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 25 V$, $V_{DS} = 0 V$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -25 V$ $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 μA	-1	-1.7	-3	V
<u>ΔVgs(th)</u> ΔTj	Gate Threshold Voltage Temperature Coefficient	$I_{\rm D}$ = –250 µA, Referenced to 25°C		4.5		mV/⁰C
R _{DS(on)}	Static Drain-Source	V _{GS} = -10 V, I _D = -5.3 A		42	50	mΩ
	On–Resistance	$V_{GS} = -4.5 V$, $I_D = -4 A$		65	80	
		$V_{\text{GS}}\text{=}-10$ V, $I_{\text{D}}\text{=}-5.3$ A, $T_{\text{J}}\text{=}125^{\circ}\text{C}$		57	77	
D(on)	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-25			A
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -5.3 A$		10		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = -15 V$, $V_{GS} = 0 V$,		528		pF
Coss	Output Capacitance	f = 1.0 MHz		132		pF
Crss	Reverse Transfer Capacitance			70		pF
Switchin	g Characteristics (Note 2)	•		ł		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 V$, $I_D = -1 A$,		7	14	ns
tr	Turn–On Rise Time	$V_{DD} = -15 \text{ V}, \mathbf{b} = -1 \text{ A}, \\ V_{GS} = -10 \text{ V}, \mathbf{R}_{GEN} = 6 \Omega$		13	24	ns
t _{d(off)}	Turn–Off Delay Time			14	25	ns
tr	Turn–Off Fall Time			9	17	ns
Q,	Total Gate Charge	V _{DS} = -15 V, I _D = -4 A,		10	14	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -10 V		2.2		nC
Q _{gd}	Gate-Drain Charge			2		nC
Drain–Se	ource Diode Characteristics	and Maximum Ratings		•		
ls	Maximum Continuous Drain-Source	-			-2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -2.1 A$ (Note 2)		-0.8	-1.2	V
	, of the junction-to-case and case-to-ambient thermal r R_{alc} is guaranteed by design while R_{acA} is determined		d as the so	Ider mountii	ng surface o	ſ

a) 50°C/W when mounted on a 1ir? pad of 2 oz copper

b) 105°CW when mounted on a .04 in² pad of 2 oz copper

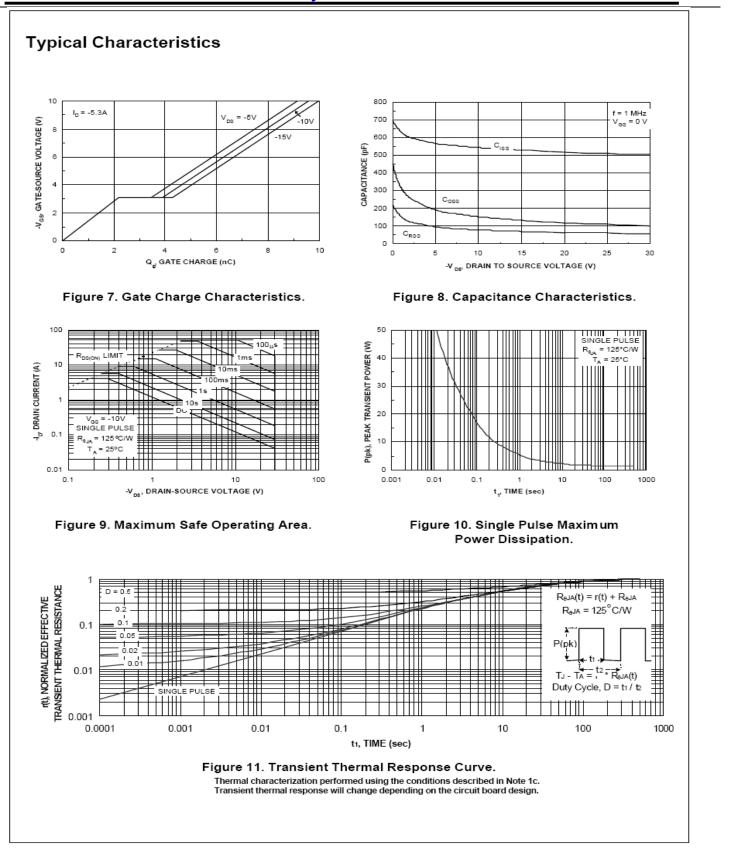
<u>```</u>

c) 125°C/W when mounted on a minimum pad.

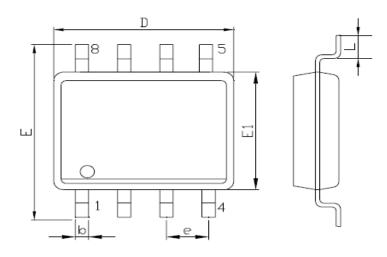

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

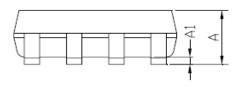
Scale 1 : 1 on letter size paper

Preliminary Datasheet


LPM4953

Preliminary Datasheet


LPM4953



Packaging Information

SOP-8

SYMBOLS	MILLIMETERS		INCHES		
SIMBOLS	MIN.	MAX.	MIN.	MAX.	
А	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
D	4.90		0.193		
Е	5.80	6.20	0.228	0.244	
E1	3.90		0.153		
L	0.40	1.27	0.016	0.050	
b	0.31	0.51	0.012	0.020	
e	1.27		0.050		